Question

The compatibility equation in terms of stress components in polar coordinates are given by ____________

a.

\((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=0\)

b.

\((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_θ )=0\)

c.

\((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r )=0\)

d.

\((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=1\)

Answer: (a).\((\frac{∂^2}{∂r^2} +\frac{1}{r} \frac{∂}{∂r}+\frac{1}{r^2} \frac{∂^2}{∂θ^2} )(σ_r+σ_θ )=0\)

Interact with the Community - Share Your Thoughts

Uncertain About the Answer? Seek Clarification Here.

Understand the Explanation? Include it Here.

Q. The compatibility equation in terms of stress components in polar coordinates are given by ____________

Recommended Subjects

Are you eager to expand your knowledge beyond Geotechnical Engineering? We've handpicked a range of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of various subjects. Happy exploring!