Hydrostatic Forces on Surfaces MCQs

Welcome to our comprehensive collection of Multiple Choice Questions (MCQs) on Hydrostatic Forces on Surfaces, a fundamental topic in the field of Fluid Mechanics. Whether you're preparing for competitive exams, honing your problem-solving skills, or simply looking to enhance your abilities in this field, our Hydrostatic Forces on Surfaces MCQs are designed to help you grasp the core concepts and excel in solving problems.

In this section, you'll find a wide range of Hydrostatic Forces on Surfaces mcq questions that explore various aspects of Hydrostatic Forces on Surfaces problems. Each MCQ is crafted to challenge your understanding of Hydrostatic Forces on Surfaces principles, enabling you to refine your problem-solving techniques. Whether you're a student aiming to ace Fluid Mechanics tests, a job seeker preparing for interviews, or someone simply interested in sharpening their skills, our Hydrostatic Forces on Surfaces MCQs are your pathway to success in mastering this essential Fluid Mechanics topic.

Note: Each of the following question comes with multiple answer choices. Select the most appropriate option and test your understanding of Hydrostatic Forces on Surfaces. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

So, are you ready to put your Hydrostatic Forces on Surfaces knowledge to the test? Let's get started with our carefully curated MCQs!

Hydrostatic Forces on Surfaces MCQs | Page 4 of 6

Discover more Topics under Fluid Mechanics

Q31.
A rectangular tank is moving horizontally in the direction of its length with a constant acceleration of 5.5 m/s². The length of tank is 5.5 m and depth is 2 m. If tank is open at the top then calculate the minimum pressure intensity at the bottom.
Discuss
Answer: (b).1.9 N/cm²
Q32.
A rectangular tank is moving horizontally in the direction of its length with a constant acceleration of 4.5 m/s².The length, width and depth of tank are 7 m, 3m, 2.5m respectively. If tank is open at the top then calculate the total force due to water acting on higher pressure end of the tank.
Discuss
Answer: (a).1.07 MN
Q33.
A tank containing water upto a depth of 500 mm is moving vertically upward with a constant acceleration of 2.45 m/s². Find the force exerted by fluid of specific gravity 0.65 on the side of tank,width of tank is 1m.
Discuss
Answer: (a).996.1 N
Q34.
A tank containing water upto a depth of 750 mm is moving vertically downward with a constant acceleration of 3.45 m/s². Find the force exerted by fluid of specific gravity 0.85 on the side of tank,width of tank is 2m.
Discuss
Answer: (a).2682.75 N
Q35.
A tank containing water upto a depth of 650 mm is stationary. Find the force exerted by fluid of specific gravity 0.55 on the side of tank,width of tank is 1.5m
Discuss
Answer: (a).1709.9 N
Q36.
The pressure intensity at the bottom remains same, even if the tank moves with constant horizontal acceleration.
Discuss
Answer: (b).False
Q37.
There will be development of shear stress due to the dynamic motion of tank or container.
Discuss
Answer: (b).False
Q38.
If the tank is moving vertically, which of its component is subjected to maximum total pressure?
Discuss
Answer: (c).Base
Q39.
A square lamina (each side equal to 2m) is submerged vertically in water such that the upper edge of the lamina is at a depth of 0.5 m from the free surface. What will be the total water pressure (in kN) on the lamina?
Discuss
Answer: (c).58.86
Q40.
A square lamina (each side equal to 2m) with a central hole of diameter 1m is submerged vertically in water such that the upper edge of the lamina is at a depth of 0.5 m from the free surface. What will be the total water pressure (in kN) on the lamina?
Discuss
Answer: (c).47.31
Page 4 of 6